TEI by Example. Module 7

Edward Vanhoutte

Ron Van den Branden

Melissa Terras
TABLE OF CONTENTS

1. Introduction .. 1
2. Textual variation .. 1
3. Describing Text Witnesses ... 8
4. Encoding Textual Variants ... 12
 4.1 Basic Organisation of an Apparatus Entry... 12
 4.2 Grouping Readings ... 16
 4.3 Classification .. 18
 4.4 Reading Details .. 22
5. Encoding Variation in Texts .. 26
 5.1 The Location-Referenced Method ... 27
 5.2 The Double-End-Point-Attached Method .. 35
 5.3 The Parallel Segmentation Method .. 42
6. Caveats .. 45
7. Summary ... 50
8. What's next? ... 56
Module 7: Critical Editing

1. Introduction

When texts are considered random combinations of strings, this can entertain interesting predictions about the completion of the complete works of William Shakespeare by a(n army of) hypothetical monkey(s) randomly hitting the keys on a typewriter (see the infinite monkey theorem). Indeed, to a computer, the textual universe is a library of Babel, in which every possible text is as likely (or rather unlikely) to exist as any other text. From this perspective, perfect duplicates may perfectly co-exist with gazillions of close approximations and texts that have nothing in common at all. In an intellectual, human context, where characters are ordered along (arbitrary) rules, two sensible texts will most likely have nothing in common at all, rather than being related in any way. In fact, the chances of identical texts can almost be ruled out to either perfect mechanical photocopies, or blatant cases of plagiarism, and as such be considered uninteresting from an intellectual point of view. However, especially in the context of greatly valued literary, cultural, and/or historical works, the odd chance that such a text has a closely resembling counterpart becomes quite interesting. It may at least indicate some kind of relationship between both texts, even provide insight in its transmission through time, shed light on its history and conception, perhaps tell us something about the creative process of its author, or by extension provide insights in The Creative Process in the working of the human mind. These domains of knowledge inform different kinds of theories of textual criticism, each with their own research interests, principles and practises. What they all have in common, however, is an attempt to represent related texts found in different physical witnesses as different versions of the same abstract work.

As we have seen already, in order to make this world of meaning accessible to/via computers, text encoding with TEI provides a sensible approach. Moreover, besides the general provisions for text encoding, the TEI Guidelines define a range of specific elements and mechanisms to represent textual variation in a sensible way for further analysis. The TEI Guidelines devote a complete chapter, 12. Critical Apparatus, to the documentation of specific elements that are grouped into the textcrit module for the encoding of textual variation. In order to use the elements covered in this tutorial module, you are thus required to include the dedicated textcrit TEI module in your TEI schema.

2. Textual variation

Similar to all other TEI modules, the elements and attributes defined in the TEI textcrit module can be used for the encoding of existing source materials (be they in print or digital form).

1 For directions on composing a TEI schema by selecting TEI modules and elements, see TBE Module 8: Customising TEI, ODD, Roma.
or the encoding of electronic documents from scratch. However, the use of this module in the context of electronic critical editing, adds another perspective to this traditional authorial/editorial angle (see 2). Electronic critical editions can be created from scratch either by encoding different primary source materials straight as a critical edition, or by generating the edition from previously encoded electronic transcriptions of those materials as independent texts in their own right. Therefore, the tags defined in the TEI textcrit module can be used to:

- **digitise** an existing print edition
- **create** an electronic edition, e.g. by recording some or all of the known variations among different witnesses to the text in a critical apparatus of variants
- **generate** an electronic edition from encoded transcriptions of the documentary source material

In the examples in this TBE module, "critical editing with TEI" will be understood as the act of encoding material sources in a TEI representation that allows for the creation or generation of a digital edition in some form (using any output format in the digital medium, e.g. HTML pages, PDF, flash movies,...), rather than digitising an existing critical edition. In this sense, the authorial/editorial angle of this TBE module differs from that of the other modules (focusing on the digitisation of a material source text in a certain genre). However, the strategies discussed in this tutorial for representing textual variation can equally be applied to the digitisation of existing critical editions. Where there are differences, these will be pointed out explicitly.

For example, consider following texts:

2. Textual variation

Some of these images may look more or less familiar to you: they are facsimiles from the first page of chapter 2 of the printed TEI Guidelines throughout their different incarnations, from version P2 (1992) to the latest version, P5 (2009). As you can imagine, the technological evolutions of these 17 years have prompted considerable changes to this chapter that introduces the technological background of text encoding with TEI, ranging from rephrasing, addition or deletion of notes, changes in italicisation, restructuring of paragraphs, etc. One way of approaching this textual variation could consist of encoding these text versions as physically distinct TEI documents, in which corresponding text structures could be aligned by a common identification mechanism. For example, the first couple of paragraphs in these 4 text witnesses could be encoded in different TEI documents as follows:

P2

P3
The encoding scheme defined by these Guidelines is formulated as an application of a system known as the Standard Generalized Markup Language (SGML). Although widely said to be short for the surnames of its progenitors, the official expansion of this abbreviation is "Standard Generalized Markup Language." SGML is an international standard for the definition of device-independent, system-independent methods of representing texts in electronic form. This chapter presents a brief tutorial guide to its main features, for those readers who have not encountered it before. For a more technical account of TEI practice in using the SGML standard, see chapter 30, "Conformance," on page 727. For a more technical description of the subset of SGML used by the TEI encoding scheme, see chapter 39, "Formal Grammar for the TEI-Interchange-Format Subset of SGML," on page 1247.

Historically, the word "markup" has been used to describe annotation or other marks within marked-up electronic text. More exactly, SGML is a metalanguage, that is, a means of formally describing a language, in this case, a markup language. Before going any further we should define these terms.
Before going any further we should define these terms. Historically, the word markup has been used to describe annotation or other marks within a text intended to instruct a compositor or typist how a particular passage should be printed or laid out. Examples include wavy underlining to indicate boldface, special symbols for passages to be omitted or printed in a particular font and so forth. As the formatting and printing of texts was automated, the term was extended to cover all sorts of special markup codes inserted into electronic texts to govern formatting, printing, or other processing.
As originally published in previous editions of the Guidelines, this chapter provided a gentle introduction to 'just enough' SGML for anyone to understand how the TEI used that standard. Since then, the Gentle Guide seems to have taken on a life of its own independent of the Guidelines, having been widely distributed (and flatteringly imitated) on the web. In revising it for the present draft, the editors have therefore felt free to reduce considerably its discussion of SGML-specific matters, in favour of a simple presentation of how the TEI uses XML.

The encoding scheme defined by these Guidelines may be formulated either as an application of the ISO Standard Generalized Markup Language (SGML) or of the more recently developed W3C Extensible Markup Language (XML). Both SGML and XML are widely-used for the definition of device-independent, system-independent methods of storing and processing texts in electronic form. It is now also the interchange and communication format used by many applications on the World Wide Web. In the present chapter we informally introduce some of its basic concepts and attempt to explain to the reader encountering them for the first time how and why they are used in the TEI scheme. More detailed technical accounts of TEI practice in this respect are provided in chapters 23. Using the TEI, 1. The TEI Infrastructure, and 22. Documentation Elements of these Guidelines.

Strictly speaking, XML is a metalanguage, that is, a language used to describe other languages, in this case, markup languages. Historically, the word markup has been used to describe annotation or other marks within a text intended to instruct a compositor or typist how a particular passage should be printed or laid out. Examples include wavy underlining to indicate boldface, special symbols for passages to be omitted or printed in a particular font, and so forth. As the formatting and printing of texts was automated, the term was extended to cover all sorts of special codes inserted into electronic texts to govern formatting, printing, or other processing.
system-independent methods of storing and processing texts in electronic form; XML being in fact a simplification or derivation of SGML. In the present chapter we introduce informally the basic concepts underlying such markup languages and attempt to explain to the reader encountering them for the first time how they are actually used in the TEI scheme. Except where the two are explicitly distinguished, references to XML in what follows may be understood to apply equally well to the TEI usage of SGML. For a more technical account of TEI practice see chapter 28 \(<hi>\text{Conformance}</hi>\); for a more technical description of the subset of SGML used by the TEI encoding scheme, see chapter 39 \(<hi>\text{Formal Grammar for the TEI-Interchange-Format Subset of SGML}</hi>\).\(</p>\)

\(<p\ xml:id="p2" corresp="P2.xml#p2a P2.xml#p2b P3.xml#p2a P3.xml#p2b P5.xml#p2" >XML is an extensible markup language used for the description of marked-up electronic text. More exactly, XML is a \(<hi>\text{metalanguage}</hi>\), that is, a means of formally describing a language, in this case, a \(<hi>\text{markup language}</hi>\). Historically, the word \(<hi>\text{markup}</hi>\) has been used to describe annotation or other marks within a text intended to instruct a compositor or typist how a particular passage should be printed or laid out. Examples include wavy underlining to indicate boldface, special symbols for passages to be omitted or printed in a particular font and so forth. As the formatting and printing of texts was automated, the term was extended to cover all sorts of special codes inserted into electronic texts to govern formatting, printing, or other processing.\(<p\>

This would allow for maximal representation of the distinct material sources, and leave the identification of the actual variation either to further processing or human inspection. A variant of this approach could integrate the transcriptions of the text in all material witnesses in a single
TEI document, and make use of appropriate linking attributes to point out the alignment between the different text structures. In their naivety, such systems are both redundant and crude. While providing all text of all text witnesses, and aligning the corresponding text structures, they provide little insight in the places where the different witnesses actually differ.

In order to encode the actual textual variation between the different text versions in a meaningful way, the TEI Guidelines provide a specialised module of elements and attributes that allow you to encode textual variation at word level. This TBE tutorial will first discuss how to describe the different text witnesses represented in the critical edition; next deal with the encoding of textual variants between these witnesses in isolation; then treat different ways of integrating such records of variation within the encoding of the critical edition; and finally point out potential problems and pitfalls when creating a critical edition with TEI.

3. Describing Text Witnesses

When creating, generating or digitising a critical edition, it is of crucial importance to document the text witnesses whose transcriptions it contains. This can be done in a `<listWit>` (list of witnesses) element, which can be put either in the `<sourceDesc>` section of the TEI header (when creating or generating a critical edition), or a division (`<div>`) of the edition's text, usually in the `<front>` section (when digitising an existing critical edition). The `<listWit>` element should describe each text witness in its own `<witness>` element. This element can contain a prose description of the witness in one or more paragraphs (`<p>`), or using a more specialised element for bibliographic description (`<bibl>`, `<biblStruct>`, or `<biblFull>`). The witness definitions should provide a unique identification code in the `@xml:id` attribute. This code is used as a sigil in the critical edition, in order to connect the textual variants with the respective witnesses in which they occur (see 4. Encoding Textual Variants (p. 12)). For example, the witness list for our critical edition of the TEI Guidelines could look as follows:
3. Describing Text Witnesses
Such bibliographic descriptions of course are easier for printed works than for manuscripts; for the latter type of witnesses, some kind of description inside `<listWit>` is advised, preferably with a pointer (using `<ptr/>` or `<ref/>`) to a full description of the manuscript inside `<msDescription>`. Since this element is not discussed in these TBE tutorials, you are referred to TEI Guidelines, 10.2 The Manuscript Description Element for a discussion of this element, and TEI Guidelines, 12.1.4.3 The Witness List for examples of describing manuscript witnesses in a digital edition.

In a critical edition, it may make sense to discern groups of witnesses, that have many text variants in common in comparison to other witnesses, and can often be conveniently summarised in one sigil. In the witness list, witnesses can be grouped by wrapping their `<witness>` descriptions in nesting `<listWit>` structures. The common sigil then can be provided as the value for an `@xml:id` attribute of the group's `<listWit>` element. The nested witness groups can be labelled with a `<head>` element. For example, in our sample text witnesses it may make sense to discern those versions of the TEI Guidelines dealing with SGML, and those dealing with XML. This could look as follows:
3. Describing Text Witnesses
Summary
The different text witnesses included in a critical edition should be documented in a `<listWit>` element. Such a list may occur in the `<sourceDesc>` section of the TEI header (for electronic editions created or generated from scratch), or in a text division inside the actual text of the edition, usually in the `<front>` section (for electronic editions digitised from an existing edition). Each text witness should be described in a `<witness>` element, containing either a prose description inside paragraphs (<p>), or one of the specific TEI elements for bibliographic description (<bibl>, <biblStruct>, <biblFull>). An `<@xml:id>` attribute must be provided for each witness, which is used as the sigil for this witness in the edition. Witness groups can be distinguished in separate nested `<listWit>` elements.

4. Encoding Textual Variants

4.1 Basic Organisation of an Apparatus Entry

Traditionally, printed critical editions have developed efficient mechanisms to represent textual variants on as little physical space as possible in what is commonly called a critical apparatus. Many types of apparatus exist, depending on the editorial theory, but all tend to put the different readings found in the different text witnesses on a par with one version of the text, which
is commonly called the base text. The TEI Guidelines offer an analogous mechanism for representing textual variants in a concise way. A piece of text with corresponding variants in the different text witnesses, is encoded in an <app> (apparatus entry) element, which holds all different readings. Each reading must be encoded in a <rdg> (reading) element, which can be associated to its respective text witness by means of the @wit attribute. Its value should point to the definition of the text witness in a <listWit> element elsewhere in the edition (see 3. Describing Text Witnesses (p. 8)). For example, let's have a closer look at the chapter title in our sample:

[witness p2] Chapter 2 A GENTLE INTRODUCTION TO SGML
[witness p3] Chapter 2 A Gentle Introduction to SGML
[witness p4] 2 A Gentle Introduction to XML
[witness p5] v A Gentle Introduction to XML

In above example, all text that differs from the corresponding fragment in any other witness is highlighted in yellow. Only the word "A" is shared between all text witnesses. In an electronic edition of our sample, these stretches of variant text could be encoded in two apparatus entries:

```xml
<app>
  <rdg wit="#p2">Chapter 2 A GENTLE INTRODUCTION TO SGML</rdg>
  <rdg wit="#p3">Chapter 2 A Gentle Introduction to SGML</rdg>
  <rdg wit="#p4">2 A Gentle Introduction to XML</rdg>
  <rdg wit="#p5">v A Gentle Introduction to XML</rdg>
</app>

<app>
  <rdg wit="#p2">GENTLE INTRODUCTION TO SGML</rdg>
  <rdg wit="#p3">Gentle Introduction to SGML</rdg>
  <rdg wit="#p4">Gentle Introduction to XML</rdg>
  <rdg wit="#p5">Gentle Introduction to XML</rdg>
</app>
```

In this example, both textual variants are encoded as two apparatus entries, with four readings each. Each <rdg> element points to the definition of its corresponding text witness by means of the sigla in its @wit attribute. Note how each sigil starts with a # sign, because it addresses the @xml:id value of a <witness> element in the edition.

Note, how the TEI Guidelines offer the means to encode textual variation, without imposing any theoretical assumptions on how to encode an apparatus for the variants in different texts. The treatment of
In printed critical editions, the assumption of a base text against which all other versions are compared is quite common. Therefore, besides readings, a TEI apparatus entry can also contain a `<lem>` (lemma) element, identifying the reading it contains as a ‘preferred’ reading, according to the editor’s theory of the text. Note that if a `<lem>` element is used, it must occur as the first element inside `<app>`. If version #p2 were considered the base text to the edition of this sample, the previous example could be encoded as follows:

```
<app>
  <lem wit="#p2">Chapter 2</lem>
  <rdg wit="#p3">Chapter 2</rdg>
  <rdg wit="#p4">2</rdg>
  <rdg wit="#p5">v</rdg>
</app>
```

To make this representation more efficient, equal readings can be collapsed into one single `<rdg>` element, by combining the sigla into a list separated by white spaces in the `@wit` attribute:

```
<app>
  <lem wit="#p2">GENTLE INTRODUCTION TO SGML</lem>
  <rdg wit="#p3">Gentle Introduction to SGML</rdg>
  <rdg wit="#p4">Gentle Introduction to XML</rdg>
  <rdg wit="#p5">Gentle Introduction to XML</rdg>
</app>
```

Variation in different text versions is an explicit theoretical act of interpretation, and it is up to the encoder to determine corresponding text fragments, and where to delimit stretches of variation. Likewise, the examples in this TBE tutorial module are fairly theory-neutral, in that they tend to use the maximal length of differing text fragments as guiding principle for the demarcation of textual variants. Because in the context of electronic critical editing a ‘preferred’ reading in a `<lem>` element is fairly theory-dependent, the examples in this TBE tutorial module will mostly just list all variants as equal `<rdg>` elements. You have to know, however, that each `<app>` element may always specify one of its readings as lemma (`<lem>`) as well.
Remember how we distinguished different witness groups in the previous section of this tutorial? This allows us to rewrite the sigla of readings shared by the versions of the TEI Guidelines dealing with either SGML or XML, using the group identification code for the corresponding group of witnesses:

You should consider an `<app>` element as a cross section of a text fragment over all of the different text witnesses. This means that all `<lem>` and `<rdg>` contents should be interpreted as mutually exclusive alternatives. Therefore, each text witness listed in the `<app>` elements should occur only once. Ideally, this should be the minimal requirement as well, so that each apparatus entry contains one corresponding text fragment across all different text witnesses included in the edition (although this is not strictly necessary when the edition uses one base text: see 5. Encoding Variation in Texts (p. 26)).

Summary

Each variant in a TEI encoded critical edition should be encoded as an apparatus entry, in an `<app>` element. An apparatus entry contains the different textual variants found in the text witnesses, encoded in different `<rdg>` (reading) elements. If the edition considers one of the text witnesses as the base text, the readings from that witness can be encoded as a lemma instead, in a `<lem>` element. Each
4.2 Grouping Readings

In both variants considered so far, arguments could be made for (re)grouping the readings. In the first apparatus entry, reading #p5 is set apart from all others because of the different chapter number. In the second apparatus entry, one possible case for explicit grouping could be the ‘genetic’ similarity of the variants in those versions of the TEI Guidelines dealing with SGML or XML.

One way of grouping readings is provided by a specialised `<rdgGrp>` element. It can be wrapped around `<rdg>` elements in an apparatus entry, in order to indicate their relatedness in some way. This `<rdgGrp>` really is nothing more than a wrapper, that can list the sigla of the text witnesses it groups in an own `@wit` attribute. For example, the readings in the previous example could be grouped as follows:

```xml
<app>
  <rdg wit="#teiSGML">Chapter 2</lb/></rdg>
  <rdgGrp wit="#teiXML">
    <rdg wit="#p4">2</rdg>
    <rdg wit="#p5">v</lb/></rdg>
  </rdgGrp>
</app>

<app>
  <rdgGrp wit="#teiSGML">
    <rdg wit="#p2">GENTLE INTRODUCTION TO SGML</rdg>
    <rdg wit="#p3">Gentle Introduction to SGML</rdg>
  </rdgGrp>
  <rdg wit="#teiXML">Gentle Introduction to XML</rdg>
</app>
```

When you have a closer look at these variants, you'll see that some of these readings contain common text as well. In the first variant, the number "2" is shared between both #teiSGML readings, and the #p4 reading. In the last variant, the #p2 and #p3 readings are set apart by the common phrase "SGML", as opposed to "XML" in the #teiXML readings. Yet, both #p2 and #p3 text witnesses vary internally in their use of capitals. Such refinements can't be expressed using the `<rdgGrp>` grouping mechanism, as a `<rdgGrp>` element can only contain `<rdg>` or `<lem>` elements. If this grouping is maintained, you could express them in a more fine grained manner using another grouping mechanism: introducing nesting `<app>` elements in the `<rdg>` elements that share common text as well as differing readings:
In the first variant, the apparatus distinguishes between those readings whose heading refers to the second chapter (#teiSGML and #p4), and reading #p5, which refers to chapter five. However, as the first group of readings shows internal variation, this can be expressed in further nesting <app> elements (see the nesting <app> elements for the "Chapter" sub-variant, and the line break). The common text can be encoded as plain text contents of the grouping <rdg> element (see the "2", which occurs in all readings of the group: #teiSGML, and #p4). In the second variant, the readings corresponding to the text witnesses dealing with SGML are set apart from those dealing with XML. Since the first group of readings contains internal variation, the variant text ("Gentle Introduction to") is wrapped in a nesting <app> element, while the common text ("SGML") appears as plain text inside the grouping <rdg> element.

Summary

When desired, related readings can be grouped using one of two mechanisms. The first one wraps a dedicated <rdgGrp> element around related readings. This element can only contain <lem> and <rdg> elements. A more sophisticated way of grouping readings is provided by using nesting <app> structures inside a <rdg> element.
4.3 Classification

So far, the most wrought out encoding of the chapter’s title in the different text witnesses looks as follows:

```
<app>
  <rdg wit="#teiSGML #p4">Chapter </rdg>
</app>
2
  <lb/>
</rdg>
</app>
<rdg wit="#p5">v <lb/></rdg>
</app>
<app>
  <rdg wit="#teiSGML"> <app>
    <rdg wit="#p2">GENTLE INTRODUCTION TO</rdg>
    <rdg wit="#p3">Gentle Introduction to</rdg>
  </app> SGML </rdg>
  <rdg wit="#teiXML">Gentle Introduction to XML</rdg>
</app>
```

Admittedly, this organisation is not the most intuitive one, mostly because it mixes different perspectives:
- a content-oriented one in the first apparatus entry, grouping those variants with a common reading (i.e. the chapter number referred to)
- a genetic-oriented one in the second apparatus entry, grouping the readings according to the groups of witnesses (i.e. those occurring in the versions of the TEI Guidelines dealing with SGML or XML)

However, this is not necessarily the most interesting perspective, for it obscures some obvious correspondences. For example, there is no way of deducting the correspondence between the `<lb/>` reading occurring in three of the four witnesses, as it is ‘buried’ in two different reading groups. There is no reason, however, not to reorganise these apparatus entries in more atomic units:
One could argue that on closer examination, not all of these variants have the same ‘status’: some are more substantive than others. This may be pointed out at the level of the individual readings, by means of a @type attribute. In this way, we could for example distinguish between orthographic readings (differing only in their spelling or presentation) and substantive readings (differing in meaning):
With this distinction in place, the type of reading could be adopted as guiding principle to derive larger stretches of variation: only when two subsequent variants only have orthographically different readings, they can be merged to one apparatus entry. Note also, how in this case all readings for the different apparatus entries share the same type. This can be encoded at the higher level of the apparatus entry as well, simply by providing a `@type` attribute for the `<app>` element:
The `<rdgGrp>` too can have a `@type` attribute for specifying the nature of the group of readings it holds. For example, we could revisit the earlier grouping example using `<rdgGrp>`:

```xml
<app type="substantive">
  <rdg wit="#teiSGML" type="substantive">Chapter 2</rdg>
  <rdgGrp wit="#teiXML" type="substantive">
    <rdg wit="#p4">2</rdg>
    <rdg wit="#p5">v</rdg>
  </rdgGrp>
</app>

@app type="orthographic">
  <rdg wit="#p2">GENTLE INTRODUCTION TO</rdg>
  <rdg wit="#p3 #p4 #p5">Gentle Introduction to</rdg>
</app>

@app type="substantive">
  <rdg wit="#teiSGML" type="substantive">SGML</rdg>
  <rdg wit="#teiXML" type="substantive">XML</rdg>
</app>
```
Summary

The readings inside `<rdg>` and `<lem>` can be categorised with a `@type` attribute, in order to indicate what type of variant they contain. When readings are grouped using `<rdgGrp>`, the `@type` attribute equally can indicate what type of variants the reading group consists of. When an apparatus entry only contains variants of the same type, this may be expressed by the `@type` attribute at the `<app>` level.

4.4 Reading Details

Besides witness (`@wit`) and type information (`@type`), readings and lemmas can provide more information about the readings they hold, in dedicated attributes. One type of information that is particularly useful for critical editions of manuscript source materials, is the identification of a document hand that is responsible for a certain reading, especially when its text witness has been written by different hands. This can be expressed in a `@hand` attribute, which points to the definition of that hand in the TEI header (see TBE Module 2: The TEI Header -- Document Hands). This could be applied to our example texts: although the TEI Guidelines are not manuscripts, they are written collaboratively by a team of editors who could be considered document hands. Suppose that we could determine who was responsible for what change in the different versions included in our example critical edition, this could be encoded as follows:
Of course this attribution is subject to a greater or lesser deal of interpretation (especially in this contrived example). Therefore, it makes sense to indicate who is responsible for it. This can be expressed in a `@resp` attribute, which can point to an individual responsible for some aspects of the electronic edition, as identified in the TEI header (see TBE Module 2: The TEI Header -- The Title Statement). As always, the `@resp` attribute applies to all aspects of the element it is attached to, and can equally be used to indicate the responsibility for an unsure transcription of a reading. As the hand attribution in the previous example can be considered quite putative, it makes sense to provide responsibility information as well:
Note, how the @hand and @resp attributes can only be provided for individual readings, corresponding to individual witnesses. It is thus illegal to use them when the witness list inside @wit contains more than one sigil, or a group sigil, as in following incorrect example:
This example is incorrect because the first reading of the first apparatus entry overgeneralises the hand information for the #p3 witness, and the last reading of the last entry incorrectly attributes the hand information for the #p5 witness. It can be done, however, using a dedicated <witDetail> element. This element provides additional information about a reading in a specific text witness. It must have two mandatory attributes: @wit, identifying the specific text witness about which more information is provided; and @target, pointing at the @xml:id of the concerned <rdg> element. This implies that the reading concerned must be formally identified with an @xml:id attribute. For example, the previous example could be corrected as:

```
<app>
  <rdg wit="#p2 #p3" xml:id="rdg1.1">Chapter 2</rdg>
  <rdg wit="#p4" hand="#SB" resp="#TBEcrew">2</rdg>
  <rdg wit="#p5" resp="#TBEcrew">v</rdg>
</app>

<witDetail target="#rdg1.1" wit="#p2" resp="#TBEcrew">attributed to <ref target="#MSMQ">Michael Sperberg-McQueen</ref></witDetail>

<app>
  <rdg wit="#p2" hand="#LB" resp="#TBEcrew">GENTLE INTRODUCTION TO SGML</rdg>
  <rdg wit="#p3">Gentle Introduction to SGML</rdg>
  <rdg wit="#teiXML" xml:id="rdg2.3">Gentle Introduction to XML</rdg>
</app>

<witDetail target="#rdg2.3" wit="#p4" resp="#TBEcrew">attributed to <ref target="#SB">Syd Bauman</ref></witDetail>
```

The <witDetail> element is a specialised type of <note>, which means it can occur nearly anywhere in the document: either inline at the place of the reading needing further specification, or grouped together elsewhere in the document.

When digitising an existing critical edition, the sigla associated with the different readings can (and should) be formally encoded in the @wit attribute, as discussed earlier (see 4.1 Basic Encoding Textual Variants)
Organisation of an Apparatus Entry (p. 12)). However, they can be transcribed literally as well, using a specific TEI element: `<wit>`. This element can then contain the literal transcription of the sigla used in the source edition, which may be of interest when they differ from their formal equivalent in the `@wit` attribute. The `<wit>` element should appear after the `<rdg>` element containing the concerned reading. For example, if our critical edition of the TEI Guidelines were based on a previous edition, the original sigla could be encoded as follows:

```xml
<app>
  <rdg wit="#teiSGML">Chapter 2</rdg>
  <wit>teiP2, teiP3</wit>
  <rdg wit="#p4">2</rdg>
  <wit>teiP4</wit>
  <rdg wit="#p5">v</rdg>
  <wit>teiP5</wit>
</app>

<app>
  <rdg wit="#p2">GENTLE INTRODUCTION TO SGML</rdg>
  <wit>teiP2</wit>
  <rdg wit="#p3">Gentle Introduction to SGML</rdg>
  <wit>teiP3</wit>
  <rdg wit="#teiXML">Gentle Introduction to XML</rdg>
  <wit>teiP4, teiP5</wit>
</app>
```

Summary

Lemma (`<lem>`) and readings (`<rdg>`) can be further qualified by means of attributes. The `@resp` attribute can be used to identify the person responsible for the encoding of the reading, while the document hand responsible for that particular reading can be referred to in a `@hand` attribute. When more detailed information is to be given for a particular reading in a particular text witness, this can be done in a `<witDetail>` element, whose `@wit` attribute must point to the concerned text witness, and whose `@target` attribute must point to the identification code of the affected reading(s). Finally, when an existing critical edition is digitised, the original sigla information can be transcribed literally in a `<wit>` element, following the `<rdg>`.

5. Encoding Variation in Texts

After this discussion of encoding textual variants themselves, it is time to have a look at the bigger picture: how do you integrate these variants into an electronic critical edition? The TEI Guidelines provide 3 different mechanisms for integrating apparatus entries in the encoding of texts (don't let the names intimidate you):
• **location-referenced method**: apparatus entries are linked to the identified text blocks in a base text that contain the respective lemmas [I, E]
• **double-end-point-attached method**: apparatus entries are linked to explicitly identified start and end positions in a base text [I, E]
• **parallel segmentation method**: apparatus entries are encoded inside a transcription of the common (invariant) text of all text witnesses [I]

In this overview, the [I] and [E] labels indicate where an apparatus encoded with that method can be physically located with regards to the transcription of the (base) text it is linked to:

- [E]: external apparatus: the apparatus is located outside the transcription of a base text, either in some other part of the TEI document containing the transcription, or in a physically distinct document
 # location-referenced, double-end-point-attached
- [I]: internal apparatus: each apparatus entry is located inline in the transcription of a (base) text, at the place where the variant occurs
 # location-referenced, double-end-point-attached, parallel segmentation

The method chosen and the physical location of the apparatus must be encoded in the TEI Header, in the `<variantEncoding/>` element inside the `<encodingDesc>` section. This is an empty element with two mandatory attributes (see TBE Module 2: The TEI Header -- The Variant Encoding):

- **@method**: indicates the method of linking the critical apparatus to the text: either location-referenced, double-end-point, or parallel-segmentation.
- **@location**: indicates the location of the critical apparatus with regards to the text: either external or internal.

Summary

The TEI Guidelines offer 3 methods for linking the critical apparatus to the text. The chosen method must be documented in the `<encodingDesc>` section of the TEI header, in a special `<variantEncoding/>` element. This is an empty element with 2 mandatory attributes. The **@method** attribute specifies the method of linking the apparatus to the text (either location-referenced, double-end-point, or parallel-segmentation). The **@location** attribute specifies the location of the apparatus relative to the text (either external or internal).

5.1 The Location-Referenced Method

The location-referenced method links an apparatus entry to a base text, by anchoring it to the text structure in the base text that contains the variant. This can be done either internally (inside the running text), or externally (outside the running text).
In an internal location-referenced apparatus, the apparatus entries are encoded within the text structures in which the variants occur. The exact location, however, is unimportant. For example, the second paragraph could be encoded as follows:
The encoding scheme defined by these Guidelines is formulated as an application of the Extensible Markup Language (XML) (Bray et al. (eds.) (2006)). XML is widely used for the definition of device-independent, system-independent methods of storing and processing texts in electronic form. It is now also the interchange and communication format used by many applications on the World Wide Web. In the present chapter we informally introduce some of its basic concepts and attempt to explain to the reader encountering them for the first time how and why they are used in the TEI scheme. More detailed technical accounts of TEI practice in this respect are provided in chapters 23. Using the TEI, 1. The TEI Infrastructure, and 22. Documentation Elements of these Guidelines.

is may be either a system known as the Standard Generalized the ISO Standard Generalized

title=ISO 8879: Information processing--Text and office systems--Standard Generalized Mark-up Language (SGML) pubPlace=Geneva, date=1986) . Although widely said to be short for the surnames of its progenitors, the official expansion of this abbreviation is "Standard Generalized Markup Language." SGML is an international standard

5. Encoding Variation in Texts
SGML is an international standard

or of the more recently developed W3C Extensible Markup Language (XML)

Both SGML and XML are widely-used

This chapter presents a brief tutorial guide to its main features, for those readers who have not encountered it before. For a more technical account of TEI practice in using XML being in fact a simplification or derivation of SGML. In the present chapter we introduce informally the basic concepts underlying such markup languages and attempt to explain to

SGML standard, see chapter 30, "TEI Conformance," [in separate fascicle]; for a more technical description of the subset of SGML

SGML standard, see chapter 28, "Conformance," on page 727. For a more technical description of the subset of SGML

reader encountering them for the first time how they are actually used in the TEI scheme. Except where the two are explicitly distinguished, references to XML in what follows may be understood to apply equally well to the TEI usage of SGML. a more technical account of For TEI practice see chapter 28 <hi>Conformance</hi> ; for a more technical description of the subset of SGML

5. Encoding Variation in Texts
Note how the apparatus entries can occur anywhere as long as it is inside the text structure (in this case, the `<p>` element) that contains their variants. The same method can be used for an external apparatus, in which the textual variants are encoded either at a different place inside the base text, or in a physically distinct TEI document. In this external apparatus, each apparatus entry must have a specific attribute: `@loc`. Its value should refer to the canonical reference of the text structure that contains the variants concerned. In an external apparatus, the previous example could look as follows:
The encoding scheme defined by these Guidelines is formulated as an application of the Extensible Markup Language (XML) (Bray et al. (eds.) (2006)). XML is widely used for the definition of device-independent, system-independent methods of storing and processing texts in electronic form. It is now also the interchange and communication format used by many applications on the World Wide Web. In the present chapter we informally introduce some of its basic concepts and attempt to explain to the reader encountering them for the first time how and why they are used in the TEI scheme. More detailed technical accounts of TEI practice in this respect are provided in chapters 23. Using the TEI, 1. The TEI Infrastructure, and 22. Documentation Elements of these Guidelines.
In these examples, the #p5 version of the TEI Guidelines is adopted as the base text to which the apparatus entries are linked. This is the sole text witness for which a full transcription is provided in the electronic critical edition using this reference method. Because of this, the reading of this base text may be omitted from the <app> elements, as in the examples above. Due to the implicit nature of the location references of the apparatus entries, it may be hard to identify the exact places with textual variation. Therefore, the reading of the base text may equally be provided in the apparatus entries inside a <lem> element; combined with string matching, this can help the user of the edition to find out where the actual variation occurs (but note the difficulty with apparatus entries encoding additions to the base text, as in the second <app> element):

Note, how the @loc attribute does not refer to an @xml:id value of the text structure concerned, but to its ‘canonical reference’. For more information, see the <app> reference section, and 2.3.5 The Reference System Declaration of the TEI Guidelines.
The encoding scheme defined by these Guidelines is formulated as an application of the Extensible Markup Language (XML) (Bray et al. (eds.) (2006)). XML is widely used for the definition of device-independent, system-independent methods of storing and processing texts in electronic form. It is now also the interchange and communication format used by many applications on the World Wide Web. In the present chapter we informally introduce some of its basic concepts and attempt to explain to the reader encountering them for the first time how and why they are used in the TEI scheme. More detailed technical accounts of TEI practice in this respect are provided in chapters 23. Using the TEI, 1. The TEI Infrastructure, and 22. Documentation Elements of these Guidelines.
Summary

The location-referenced method uses an implicit anchoring technique to link the apparatus entries with the base text. In an internal apparatus, the apparatus entries can occur anywhere inside the text structure in which their variants occur. In an external apparatus, the link is established through the use of the @loc attribute on the <app> elements, which points to a canonical reference of the relevant text structures in the base text.

5.2 The Double-End-Point-Attached Method

The double-end-point-attached method links an apparatus entry to a base text, by anchoring it to the exact start and end positions of its lemma in the base text. This can be done either internally (inside the running text), or externally (outside the running text).

In an internal double-end-point-attached apparatus, the apparatus entries occur immediately after their lemma in the transcription of the base text. A specific @from attribute must be used to exactly point at the starting point of the preceding lemma in the text. Its value should be a pointer to the formal identification code of an element in the base text that corresponds to the start of the lemma. If this point coincides with the start of an existing text structure, the identification code of its element may be used; otherwise, an empty <anchor/> milestone element must be inserted in the base text, whose sole purpose is to provide a formal code for its @xml:id attribute. For example, an internal apparatus for the example in the previous section could look as follows:
The encoding scheme defined by these Guidelines is formulated as an application of the Extensible Markup Language (XML) (Bray et al. (eds.) (2006)). XML is widely used as an application of the Extensible Markup Language (SGML). Although widely said to be short for the surnames of its progenitors, the official expansion of this abbreviation is "Standard Generalized Markup Language." SGML is an international standard.
or of the more recently developed W3C Extensible Markup Language (XML).<note place="foot">
<bibl>
<editor>World Wide Web Consortium</editor>
<title>Extensible Markup Language (XML) 1.0</title>, available from
<ref target="http://www.w3.org/TR/REC-xml">http://www.w3.org/TR/REC-xml</ref>
</bibl></note>

Both SGML and XML are widely-used for the definition of device-independent, system-independent methods of storing and processing texts in electronic form. It is now also the interchange and communication format used by many applications on the World Wide Web. In this chapter we present a brief tutorial guide to its main features, for those readers who have not encountered it before. For a more technical account of TEI practice in using XML, see chapter 28, "Conformance," on page 727. For a more technical description of the subset of SGML used in the TEI scheme. Except where the two are explicitly distinguished, references to XML in what follows may be understood to apply equally well to the TEI usage of SGML. More detailed technical accounts of TEI practice in this respect are provided in chapters 23. Using the TEI, 1. The TEI Infrastructure, and 22. Documentation Elements.
An external double-end-point-attached apparatus is very similar to its internal equivalent, apart from the fact that the apparatus entries are located outside of the running text. Due to this physical separation, the need arises to explicitly point out the end point of the lemma in the base text as well (again, either using the @xml:id attribute of an existing text structure, or that of an explicit <anchor/> element). In order to refer to this end point of the textual variation, the <app> element must have another attribute: @to, pointing at the identification code of the relevant point in the base text. For example, an external apparatus for the previous example could look as follows:
The encoding scheme defined by these Guidelines is formulated as an application of the Extensible Markup Language (XML) (Bray et al. (eds.) (2006)). XML is widely used for the definition of device-independent, system-independent methods of storing and processing texts in electronic form. It is now also the interchange and communication format used by many applications on the World Wide Web. In the present chapter we informally introduce some of its basic concepts and attempt to explain to the reader encountering them for the first time how and why they are used in the TEI scheme. More detailed technical accounts of TEI practice in this respect are provided in chapters 23. Using the TEI, 1. The TEI Infrastructure, and 22. Documentation Elements of these Guidelines.
Of course, here too, the lemma of the base text can be explicitly recorded in the apparatus entries as well:

```xml
<p>
<div>
</div>
</p>
</text>
</TEI>
```
The encoding scheme defined by these Guidelines is formulated as an application of the Extensible Markup Language (XML) (Bray et al. (eds.) (2006)). XML is widely used for the definition of device-independent, system-independent methods of storing and processing texts in electronic form. It is now also the interchange and communication format used by many applications on the World Wide Web. In the present chapter we informally introduce some of its basic concepts and attempt to explain to the reader encountering them for the first time how and why they are used in the TEI scheme. More detailed technical accounts of TEI practice in this respect are provided in chapters 23. Using the TEI, 1. The TEI Infrastructure, and 22. Documentation Elements of these Guidelines. In this chapter, we informally introduce some of its basic concepts and attempt to explain to the reader encountering them for the first time how and why they are used in the TEI scheme. More detailed technical accounts of TEI practice in this respect are provided in chapters 23. Using the TEI, 1. The TEI Infrastructure, and 22. Documentation Elements of these Guidelines.

5. Encoding Variation in Texts
Summary

The double-end-point-attached method provides a means to explicitly anchor an apparatus entry to the exact position where its lemma in the base text differs from one of the other readings. In an internal apparatus, the apparatus entries should be placed immediately after the base text's lemma. Each <app> element must have a @from attribute pointing to the @xml:id identification code of an element indicating the start of the lemma in the base text. In an external apparatus, the apparatus entries must formally identify the end point of the lemma as well, using a @to attribute that points to the @xml:id identification code of an element indicating the end of the lemma in the base text. If no other elements are available, these @xml:id attributes may be encoded on empty <anchor/> elements inside the base text.

5.3 The Parallel Segmentation Method

Contrary to both other methods, the parallel segmentation method only allows for the encoding of an inline apparatus. Similarly to an internal double-end-point-attached apparatus entry, a parallel segmented apparatus entry is encoded inline, at the exact place where the variation occurs. However, a parallel segmented apparatus entry encodes all readings as equal variants, thus interweaving the common (invariant) text of all text witnesses with apparatus entries that contain all different alternative readings. In this sense, the notions of a base text and lemma become obsolete: all text that is common, is shared; all varying text is encoded as a separate reading in an apparatus entry. Because of this exact anchoring at the place of occurrence in the ‘palimpsest’ text, no specific attributes are necessary for the <app> element. For example, the preceding example can be expressed as a parallel segmented apparatus as follows:
The encoding scheme defined by these Guidelines is may be either as an application of a system known as the Standard Generalized Markup Language (SGML). Although widely said to be short for the surnames of its progenitors, the official expansion of this abbreviation is "Standard Generalized Markup Language." SGML is an international standard or of the more recently developed W3C Extensible Markup Language (XML).
Both SGML and XML are widely-used (Bray et al. (eds.) (2006)). XML is widely used for the definition of device-independent, system-independent methods of representing, storing and processing texts in electronic form. This chapter presents a brief tutorial guide to its main features, for those readers who have not encountered it before. For a more technical account of TEI practice in using XML being in fact a simplification or derivation of SGML. In the present chapter we introduce informally the basic concepts underlying such markup languages and attempt to explain to the reader encountering them for the first time how they are actually used by in the TEI encoding scheme, see chapter 39, "Formal Grammar for the TEI-Interchange-Format Subset of SGML," [in separate fascicle] ; for a more technical description of the subset of SGML reader encountering them for the first time how and why they are used by in the TEI scheme. Except where the two are explicitly distinguished, references to XML in what follows may be understood to apply equally well to the TEI usage of SGML. a more technical account of For TEI practice see chapter 28 Conformance ; for a more technical description of the subset of SGML present chapter we informally introduce some of its concepts and attempt to explain to the reader encountering them basic for the first time how and why they are used by in the TEI encoding scheme, see chapter 39, "Formal Grammar for the TEI-Interchange-Format Subset of SGML," [in separate fascicle] ; for a more technical description of the subset of SGML reading Variation in Texts
Summary

The parallel segmentation method encodes all variants as equal readings inside apparatus entries that are located at their precise place of occurrence in all texts. This results in a single text that contains an integral view on both the common text and the textual variants. Because of this, the notions of base text and lemma become irrelevant.

6. Caveats

While the <app> element provides a powerful and efficient means for representing textual variation, some caveats must be pointed out. First off, the content model for the <lem> and <rdg> elements is limited to phrase-level elements. This may pose a problem for variants that involve larger structural units, like the addition or deletion of a paragraph. For example, if we consider the first block of text in the #p4 version:

As originally published in previous editions of the Guidelines, this chapter provided a gentle introduction to 'just enough' SGML for anyone to understand how the TEI used that standard. Since then, the Gentle Guide seems to have taken on a life of its own independent of the Guidelines, having been widely distributed (and flatteringly imitated) on the web. In revising it for the present draft, the editors have therefore felt free to reduce considerably its discussion of SGML-specific matters, in favour of a simple presentation of how the TEI uses XML.

All other versions start with the phrase "The encoding scheme defined by these Guidelines", which is the start of the second paragraph in version #p4 as well. Therefore, this block of text can be considered an addition compared to the earlier versions, while it was deleted in version #p5. Intuitively, one might wish to encode this as follows:
As originally published in previous editions of the Guidelines, this chapter provided a gentle introduction to 'just enough' SGML for anyone to understand how the TEI used that standard. Since then, the Gentle Guide seems to have taken on a life of its own independent of the Guidelines, having been widely distributed (and flatteringly imitated) on the web. In revising it for the present draft, the editors have therefore felt free to reduce considerably its discussion of SGML-specific matters, in favour of a simple presentation of how the TEI uses XML.

However, <p> being a member of a ‘chunk-level’ model class of elements, it is not allowed as contents of <rdg>. There are two ways of solving such problems:

- changing the encoding: if the content allows it, you can look for alternative ways to encode the contents (without resorting to tag abuse, however!)
- changing the TEI scheme: by redefining the content model of <rdg>, you can make sure that the encoding validates in a TEI-conformant way. For details on how to customise a TEI scheme, see TBE module 8. Customising TEI, ODD, Roma.

In this example, the contents of the variant text block permits an interpretation as a note that could be characterised as a disclaimer. In TEI, the <note> element is a member of the global model class, and thus may occur inside <rdg>. A valid alternative to the previous encoding could be:

A harder problem, however, occurs when the variation occurs on a structural level. For example, if you look closely at the facsimiles of the TEI Guidelines above, you'll notice that there is a paragraph shift at the sentence starting with "Historically, the word markup has been used ":

- in the #p2 and #p3 versions, this sentence starts the third paragraph
- in the #p4 and #p5 versions, this sentence is part of the second paragraph
This poses a harder problem to the representation, as it involves markup itself (i.e. the end and start tag of the third paragraph are the subject of variation). As XML requires proper nesting, this is a problem in any XML representation of this kind of structural variation. Again, two strategies could be followed (none of which is ideal, however):

- encode structural variants as variant structures. However, this may obscure their alignment.
- encode structural variants using milestone elements instead of full-blown XML structures.

However, depending on your view on the texts, this could be considered less orthodox from an encoding point of view, as it implies some notion of a base text that determines the encoding of the others.

The first option would compare the individual transcriptions of these text witnesses, some of which spread more or less the same textual contents over 3 paragraphs, while others use only 2 paragraphs. In a parallel segmented apparatus, this might look as follows:

```xml
<app>
  <rdg wit="#p2_p #p3_p">
    <p>SGML is an international standard for the description of marked-up electronic text. More exactly, SGML is a <app>
      <rdg wit="#p2_p">metalanguage</rdg>
      <rdg wit="#p3_p">
        <hi>metalanguage</hi>
      </rdg>
    </app>, that is, a means of formally describing a language, in this case, a <app>
      <rdg wit="#p2_p">markup language</rdg>
      <rdg wit="#p3_p">
        <hi>markup language</hi>
      </rdg>
    </app>. Before going any further we should define these terms.</p>
  </rdg>
  <rdg wit="#p4 #p5"/>
</app>

<p><app>
  <rdg wit="#p4">XML is an extensible markup language used for the description of marked-up electronic text. More exactly, XML is a <hi>metalanguage</hi>, that is, a means of formally describing a language, in this case, a <hi>markup language</hi>. </rdg>
  <rdg wit="#p5">Strictly speaking, XML is a metalanguage, that is, a language used to describe other languages, in this case, markup languages. </rdg>
  <rdg wit="#p2_p #p3_p"/>
</app>Historically, the word
</p>
```
This approach treats the shifting paragraph as a variant in its own right, that is present in some witnesses (#p2 and #p3), while absent in the others (#p4 and #p5). The second apparatus entry then omits the text of #p2 and #p3, while including the (corresponding) text of #p4 and #p5. However, as this example illustrates, the alignment of the corresponding text fragments between both groups of witnesses (those starting a new paragraph and those that don't) is lost: there is no way of telling how the phrases "SGML is an international standard [...] More exactly, SGML [...]" (in #p2 and #p3) and "XML is an extensible markup language [...] More exactly, XML [...]" correspond. This kind of encoding could be less problematic when generating an electronic critical edition (in which case the more complicated apparatus encoding could be generated by an automatic collation routine). When creating an electronic edition, the construction of such a more complex apparatus entry could be less desirable.

The other solution would be to encode the paragraph break in the #p2 and #p3 versions using an empty milestone marker: an empty element that indicates some kind of structural boundary in the text where it occurs, as in this parallel segmented example:

......

Note, how the treatment of the <p> element in the first apparatus entry would require a modification of the TEI scheme.
SGML is an international standard for the description of marked-up electronic text. More exactly, XML is an extensible markup language used for the description of marked-up electronic text. More exactly, Strictly speaking, SGML is a metalanguage, that is, a means of formally describing a language, in this case, a markup language. Before going any further we should define these terms. Historically, the word... Since the milestone paragraph boundary marker (<milestone type="p"/>) removes the intrusive XML boundaries, this allows us to compare the text between all versions. However, this implies that the encoding of the third paragraph in the #p2 and #p3 versions is suppressed, in contrast to the other paragraphs in these text versions. This could be less a problem when creating an electronic critical edition, rather than generating one. In the latter case, the milestone encoding would reflect a dependency on a base text (that does not have the paragraph break). Moreover, it presupposes some kind of structural alignment prior to the encoding of the individual texts.

Summary

Problems may arise when textual variation occurs on above-paragraph level, as the <rdg> element may only contain phrase-level elements. Such problems may be overcome by trying to look for an alternative (phrase-level) encoding of such text structures, or by modifying the TEI scheme so that...
the content model of `<rdg>` is widened. Other problems can arise when the variation involves text structures as well, giving rise to problems of overlapping XML structures. This can be avoided by either ignoring the possible alignment of such structures in the apparatus, or paraphrasing some structural boundaries with empty milestone elements.

7. Summary

This tutorial module has focused on the encoding of textual variation in different text witnesses. Although the determination of textual variation itself can depend on the editorial theories for the critical edition, and the TEI Guidelines offer many possibilities to encode textual variation, we'll conclude with a possible encoding as a critical edition of the text samples we used in this tutorial module. In this example, we chose for a parallel segmented internal apparatus, which could look as follows:
<TEI xmlns="http://www.tei-c.org/ns/1.0">
 <teiHeader>
 <fileDesc>
 <!-- ... -->
 </fileDesc>
 <sourceDesc>
 <listWit>
 <witness xml:id="p2">
 <bibl>
 <editor>Sperberg-McQueen, M.</editor>; <editor>Burnard, L.</editor> (eds.). <title>TEI P2 Guidelines for the Encoding and Interchange of Machine Readable Texts Draft P2</title> (published serially 1992-1993); Draft Version <date when="1993-04-02">2 of April 1993</date>:
 </witness>
 <witness xml:id="p3">
 <bibl>
 <editor>Sperberg-McQueen, C.M.</editor>; <editor>Burnard, L.</editor> (eds.). <title>Guidelines for Electronic Text Encoding and Interchange. TEI P3. Revised reprint</title> <publisher>Text Encoding Initiative</publisher> : <pubPlace>Oxford</pubPlace>, <pubPlace>Providence</pubPlace>, <pubPlace>Charlottesville</pubPlace>, <pubPlace>Bergen</pubPlace>, <date when="1999">1999</date>
 </bibl>
 </witness>
 <witness xml:id="p4">
 <bibl>
 <editor>Sperberg-McQueen, C.M.</editor>; <editor>Burnard, L.</editor> (eds.). <title>TEI P4: Guidelines for Electronic Text Encoding and Interchange. XML-compatible edition</title> <publisher>Text Encoding Initiative Consortium</publisher> : <pubPlace>Oxford</pubPlace>, <pubPlace>Providence</pubPlace>, <pubPlace>Charlottesville</pubPlace>, <pubPlace>Bergen</pubPlace>, <date when="2002">2002</date>
 </bibl>
 </witness>
 <witness xml:id="p5">
 <bibl>
 <editor>Sperberg-McQueen, C.M.</editor>; <editor>Burnard, L.</editor> (eds.). <title>TEI P5: Guidelines for Electronic Text Encoding and Interchange. Revised and re-edited</title>
 </bibl>
 </witness>
 </listWit>
 </sourceDesc>
 </teiHeader>
</TEI>
<publisher>Text Encoding Initiative Consortium</publisher>: <pubPlace>Oxford</pubPlace>, <pubPlace>Providence</pubPlace>, <pubPlace>Charlottesville</pubPlace>, <pubPlace>Nancy</pubPlace>, <date when="2005">2005</date>
</bibl>
</witness>
</sourceDesc>
</fileDesc>
<!-- ... -->
<encodingDesc>
<variantEncoding method="parallel-segmentation" location="internal"/>
</encodingDesc>
<!-- ... -->
</teiHeader>
<text>
<body>
<app>
<rdg wit="#p2">GENTLE INTRODUCTION TO SGML</rdg>
<rdg wit="#p3">Gentle Introduction to SGML</rdg>
<rdg wit="#p4 #p5">Gentle Introduction to XML</rdg>
</app>
</head>
</text>

7. Summary
As originally published in previous editions of the Guidelines, this chapter provided a gentle introduction to 'just enough' SGML for anyone to understand how the TEI used that standard. Since then, the Gentle Guide seems to have taken on a life of its own independent of the Guidelines, having been widely distributed (and flatteringly imitated) on the web. In revising it for the present draft, the editors have therefore felt free to reduce considerably its discussion of SGML-specific matters, in favour of a simple presentation of how the TEI uses XML.

The encoding scheme defined by these Guidelines is formulated either as an application of a system known as the Standard Generalized Markup Language (SGML). Although widely said to be short for the surnames of its progenitors, the official expansion of this abbreviation is "Standard Generalized Markup Language." SGML is an international standard or of the more recently developed W3C Extensible Markup Language (XML).
<title>Extensible Markup Language (XML) 1.0</title>

, available from
<ref target="http://www.w3.org/TR/REC-xml">http://www.w3.org/TR/REC-xml</ref>
</bibl>

NOTE. Both SGML and XML are widely-used.
<rdg wit="#p5">XML (Bray et al. (eds.) (2006)). XML is widely used</rdg>
</app>
for the definition of device-independent, system-independent methods of
<app>
<rdg wit="#p2 #p3">representing</rdg>
<rdg wit="#p4 #p5">storing and processing</rdg>
</app>
texts in electronic form.
<app>
<rdg wit="#p2 #p3">This chapter presents a brief tutorial guide to its main features, for those readers who have not encountered it before. For a more technical account of TEI practice in using</rdg>
<rdg wit="#p4">XML being in fact a simplification or derivation of SGML. In the present chapter we introduce informally the basic concepts underlying such markup languages and attempt to explain to</rdg>
<rdg wit="#p5">It is now also the interchange and communication format used by many applications on the World Wide Web. In</rdg>
</app>
the
<app>
<rdg wit="#p2">SGML standard, see chapter 30, "TEI Conformance," [in separate fascicle]; for a more technical description of the subset of SGML</rdg>
<rdg wit="#p3">SGML standard, see chapter 28, "Conformance," on page 727. For a more technical description of the subset of SGML</rdg>
<rdg wit="#p4">reader encountering them for the first time how they are actually used in the TEI scheme. Except where the two are explicitly distinguished, references to XML in what follows may be understood to apply equally well to the TEI usage of SGML. a more technical account of For TEI practice see chapter 28 <hi>Conformance</hi> ; for a more technical description of the subset of SGML</rdg>
<rdg wit="#p5">present chapter we informally introduce some of its concepts and attempt to explain to the reader encountering them basic for the first time how and why they are</rdg>
</app>
used
<app>
<rdg wit="#p2 #p3 #p4">by</rdg>
<rdg wit="#p5">in</rdg>
</app>
the TEI
<app>
<rdg wit="#p2 #p3 #p4">encoding</rdg>
<rdg wit="#p5"/>
</app>
scheme
<app>
<rdg wit="#p3">, see chapter 39, "Formal Grammar for the TEI-Interchange-Format Subset of SGML," on page 1247</rdg>
<rdg wit="#p4">, see chapter 39 <hi>Formal Grammar for the TEI-Interchange-Format Subset of SGML</hi></rdg>
More detailed technical accounts of TEI practice in this respect are provided in chapters 23. Using the TEI, 1. The TEI Infrastructure, and 22. Documentation Elements of these Guidelines.

SGML is an international standard for the description of marked-up electronic text. More exactly, XML is an extensible markup language used for the description of marked-up electronic text. More exactly, Strictly speaking, is a metalanguage, that is, a means of formally describing a language used to describe other languages. Historically, the word has been used to describe annotation or other marks within a text intended to instruct a compositor or typist how a particular passage should be printed or laid out. Examples include wavy underlining to indicate boldface, special symbols for passages to be omitted or printed in a particular font, and so forth. As the formatting and printing of texts was automated, the term was extended.
to cover all sorts of special markup codes inserted into electronic texts to govern formatting, printing, or other processing.

8. What's next?

You have reached the end of this tutorial module covering the markup of primary source materials with TEI. You can now either

- proceed with other TEI by Example modules
- have a look at the examples section for the primary sources module.
- take an interactive test. This comes in the form of a set of multiple choice questions, each providing a number of possible answers. Throughout the quiz, your score is recorded and feedback is offered about right and wrong choices. Can you score 100%? Test it here!